
// Security Assessment 07.15.2025 - 07.17.2025

Android SDK

Infatica

A n d r o i d S D K - I n fa t i ca

Prepared by: HALBORN

Last Updated 08/26/2025

Date of Engagement: July 15th, 2025 - July 17th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

3

CRITICAL

0

HIGH

0

MEDIUM

2

LOW

1

INFORMATIONAL

0

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Caveats
5. Scope
6. Constrains & limitations
7. Risk methodology
8. Scope
9. Assessment summary & findings overview
10. Findings & Tech Details

10.1 Cleartext traffic allowed
10.2 Release build without code obfuscation
10.3 Sensitive information disclosure via logging

1 0 0%

1 . I n t r o d u c t i o n

Infatica engaged Halborn to conduct a code review assessment on their repository, beginning on July 15th 2025 and ending on
July 17th 2025 . The security assessment was scoped to the private repository that Infatica shared with the Halborn team.

2. A s s e s s m e n t S u m m a r y

The Halborn Team was allocated three days for this engagement, during which one full-time security engineer — expert in
blockchain and security — conducted a comprehensive audit of the in-scope components related to Infatica repository. This
engineer possesses advanced skills in penetration testing, web application security assessments, and an in-depth understanding of
multiple blockchain protocols.

The primary objectives of this audit were to:

Verify that each component performs its intended functions accurately and reliably.
Identify and assess potential security issues within the source code, particularly those that could impact the privacy and

protection of PII (Personally Identifiable Information).

Additional objectives included evaluating adherence to industry best practices, ensuring robust security measures are in place, and
identifying opportunities for further strengthening the security posture.

The source code review of Infatica repository revealed several weaknesses demanding attention.

In the course of a comprehensive source code review of the Infatica SDK, four distinct security shortcomings were identified that
merit prompt attention. First, the SDK’s Android test application was configured to permit cleartext traffic, thereby exposing user
data and control communications to interception on untrusted networks. Second, numerous third‑party libraries were found to be
outdated or comprised known vulnerabilities, potentially undermining the overall security posture of any integrating application. Third,
the release build configuration omitted code minification and obfuscation, leaving internal implementation details readily accessible
to reverse engineering and intellectual property theft. Finally, the SDK’s logging routines were observed to record network
configuration information, such as DNS server addresses, which could inadvertently disclose network infrastructure data.

It is recommended that these areas be addressed holistically to elevate the security baseline of the Infatica SDK. Enforcement of
encrypted communications, regular dependency management, activation of build‑time obfuscation, and adoption of secure logging
practices will collectively ensure that the SDK remains robust against emerging threats and integrations uphold the highest
standards of confidentiality and integrity.

Finally, based on the review of Infatica SDK, it can be confirmed that the code did not collect, process, or store any end‑user
personal data (PII - Personally Idenfiable Information) beyond IP addresses and an anonymized UUID used solely for routing.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn combined manual and automated security testing to strike the right balance between speed, thoroughness, and precision
within the scope of the penetration test. Manual techniques were employed to reveal nuanced logical, procedural, and
implementation-level flaws, while automated tools broadened the assessment’s reach—rapidly pinpointing common vulnerabilities
across the entire solution.

Throughout the engagement, we progressed through, among the following —but not limited to— phases (when applied), leveraging
both targeted tools and bespoke techniques:

Content & Functionality Mapping
Cataloging every feature and endpoint exposed by the application.

Technology-Stack & Public Code Review
Identifying known vulnerabilities in frameworks, libraries, and any publicly accessible source repositories.

Software Version Analysis
Detecting outdated or unpatched components.

Sensitive Data Exposure
Hunting for leaks of critical or private information.

Business-Logic Testing
Uncovering flaws in workflows, transaction flows, and access controls.

Access Control Assessment
Verifying correct enforcement of permissions and role-based restrictions.

Authentication & Authorization
Stress-testing login flows, token handling, and privilege escalation paths.

Input Validation & Handling
Ensuring all user inputs are properly sanitized and parsed.

Fuzzing & Parameter Injection
Applying randomized and structured payloads—SQL, JSON, HTML, command-line, directory path injections—to provoke unexpected
behavior.

Brute-Force & Rate-Limiting Tests
Validating defenses against credential stuffing, account-lockout bypass, and throttling evasion.

Response Manipulation
Tampering with server replies to detect insecure assumptions or client-side vulnerabilities.

Deep Source-Code Review
Manually inspecting critical modules for hidden flaws and backdoors.

4. C a v e a t s

5. S c o p e

The initial commit ID was 90abe642305d4e9d141c3eb4324ea9e41aa3858b

https://git.infatica.io/infatica_golang/android_sdk/-/tree/90abe642305d4e9d141c3eb4324ea9e41aa3858b

However, after two days of the engagement, the commit was updated to 89afb4413271db462a729201af63a0b2128fbdb0 because
there were many issues during the compilation process.

https://git.infatica.io/infatica_golang/android_sdk/-/tree/89afb4413271db462a729201af63a0b2128fbdb0

https://git.infatica.io/infatica_golang/android_sdk/-/tree/90abe642305d4e9d141c3eb4324ea9e41aa3858b
https://git.infatica.io/infatica_golang/android_sdk/-/tree/89afb4413271db462a729201af63a0b2128fbdb0

6. C o n s t r a i n s & L i m i t a t i o n s

It was not possible to compile the provided source code due to persistent build errors encountered during the assessment. Although
the Infatica team kindly supplied an updated version on the second day of our three‑day review, the revised code likewise failed to
compile. Consequently, Halborn was unable to execute or test a functional, compiled SDK during this engagement.

7. R I S K M E T H O D O L O GY

Halborn assesses the severity of findings using either the Common Vulnerability Scoring System (CVSS) framework or the
Impact/Likelihood Risk scale, depending on the engagement. CVSS is an industry standard framework for communicating
characteristics and severity of vulnerabilities in software. Details can be found in the CVSS Specification Document published by
F.I.R.S.T.

Vulnerabilities or issues observed by Halborn scored on the Impact/Likelihood Risk scale are measured by the LIKELIHOOD of a
security incident and the IMPACT should an incident occur. This framework works for communicating the characteristics and impacts
of technology vulnerabilities. The quantitative model ensures repeatable and accurate measurement while enabling users to see the
underlying vulnerability characteristics that were used to generate the Risk scores. For every vulnerability, a risk level will be
calculated on a scale of 5 to 1 with 5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.
4 - High probability of an incident occurring.
3 - Potential of a security incident in the long term.
2 - Low probability of an incident occurring.
1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.
4 - May cause a significant level of impact or loss.
3 - May cause a partial impact or loss to many.
2 - May cause temporary impact or loss.
1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating a value of 10 to 1 with 10 being the highest level of
security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL
9 - 8 - HIGH
7 - 6 - MEDIUM
5 - 4 - LOW
3 - 1 - VERY LOW AND INFORMATIONAL

https://www.first.org/cvss/

8. S C O P E

REPOSITOR IES

(a) Repository: 90abe642305d4e9d141c3eb4324ea9e41aa3858b

(b) Assessed Commit ID: 90abe64

(a) Repository: b0abd19070c5fe366b0c90406b77581c2def8e5c

(b) Assessed Commit ID: b0abd19

(a) Repository: 89afb4413271db462a729201af63a0b2128fbdb0

(b) Assessed Commit ID: 89afb44

REMEDIAT ION COMMIT ID :

https://git.infatica.io/infatica_golang/android_sdk/-/tree/b3a27148d91ee16105c42363853791d1ec66d102

Out-of-Scope: New features/implementations after the remediation commit IDs.

9 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

2

LOW

1

INFORMATIONAL

0

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

CLEARTEXT TRAFFIC ALLOWED MEDIUM RISK ACCEPTED - 08/11/2025

RELEASE BUILD WITHOUT CODE OBFUSCATION MEDIUM SOLVED - 08/11/2025

SENSITIVE INFORMATION DISCLOSURE VIA LOGGING LOW SOLVED - 08/11/2025

https://git.infatica.io/infatica_golang/android_sdk/-/tree/90abe642305d4e9d141c3eb4324ea9e41aa3858b
https://git.infatica.io/infatica_golang/android_sdk/-/tree/b0abd19070c5fe366b0c90406b77581c2def8e5c
https://git.infatica.io/infatica_golang/android_sdk/-/tree/89afb4413271db462a729201af63a0b2128fbdb0
https://git.infatica.io/infatica_golang/android_sdk/-/tree/b3a27148d91ee16105c42363853791d1ec66d102

1 0 . F I N D I N G S & T EC H D E TA I L S

1 0 .1 C L E A RT E X T T R A F F I C A L LOWE D

// MEDIUM

Description
The Android test application explicitly allowed unencrypted HTTP traffic. In the file android_sdk/service-
test/app/src/main/AndroidManifest.xml , the application manifest included:

<<application...application...
 usesCleartextTrafficusesCleartextTraffic==""truetrue"">>
 … …
</</applicationapplication>>

Because usesCleartextTraffic was set to true , the SDK permitted all cleartext (HTTP) connections at runtime, bypassing
Android’s default network security protections.

Impact

Allowing cleartext traffic exposed end‑users to man‑in‑the‑middle (MITM) attacks. An attacker on the same network (e.g., a public
Wi‑Fi hotspot) could intercept or modify HTTP requests and responses between the SDK and its back‑end servers. This could lead to
leakage of sensitive data (such as session tokens or proxy metadata), alteration of proxy instructions, or injection of malicious
payloads into the SDK’s traffic.

Proof of Concept

File name: android_sdk/service-test/app/src/main/AndroidManifest.xml
Line number: 6

<?xml version="1.0" encoding="utf-8"?><?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="<http://schemas.android.com/apk/res/android>"<manifest xmlns:android="<http://schemas.android.com/apk/res/android>"
 xmlns:tools="<http://schemas.android.com/tools>"> xmlns:tools="<http://schemas.android.com/tools>">

 <application <application
 android:usesCleartextTraffic="true" android:usesCleartextTraffic="true"
 android:allowBackup="true" android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules" android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules" android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher" android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name" android:label="@string/app_name"
 android:supportsRtl="true" android:supportsRtl="true"
 android:theme="@style/Theme.InfaticaAgentServiceTest" android:theme="@style/Theme.InfaticaAgentServiceTest"
 tools:targetApi="31"> tools:targetApi="31">
 <activity <activity
 android:name=".MainActivity" android:name=".MainActivity"
 android:exported="true" android:exported="true"
 android:theme="@style/Theme.InfaticaAgentServiceTest"> android:theme="@style/Theme.InfaticaAgentServiceTest">
 <intent-filter> <intent-filter>
 <action android:name="android.intent.action.MAIN" /> <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" /> <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter> </intent-filter>
 </activity> </activity>
 </application> </application>

</manifest></manifest>

android:android:

Score

CVSS:3.1/AV:A/AC:L/PR:N/UI:R/S:U/C:H/I:N/A:N (5.7)

Recommendation

Enforce HTTPS: Remove android:usesCleartextTraffic="true" or set it to false in all manifest files for production builds.
Network Security Config: Create a Network Security Configuration XML that only permits cleartext for explicitly whitelisted

domains (if strictly necessary for legacy endpoints), and reference it in the manifest via android:networkSecurityConfig .
CI Validation: Add a build‑time check to fail CI if any manifest in the SDK (or test apps) allows cleartext traffic.
Review Legacy Dependencies: Ensure all third‑party libraries and endpoints used by the SDK support HTTPS exclusively.

Remediation Comment
RISK ACCEPTED : The Infatica team accepted the risk of this issue.

https://developer.android.com/training/articles/security-config

1 0 . 2 R E L E AS E B U I L D WI T H O U T C O D E O B F U S CAT I O N

// MEDIUM

Description
During the source code review of the private Infatica SDK repository, it was discovered that the Android test application’s Gradle
release configuration had code minification and obfuscation disabled. In android_sdk/service-test-
java/app/build.gradle.kts , the release build type was defined as:

buildTypes {buildTypes {
 release { release {
 isMinifyEnabled = false isMinifyEnabled = false
 proguardFiles(getDefaultProguardFile("proguard-android-optimize.txt"), "proguard-rules.pro") proguardFiles(getDefaultProguardFile("proguard-android-optimize.txt"), "proguard-rules.pro")
 } }
 } }

Because minifyEnabled was set to false , neither R8 nor ProGuard processed or obfuscated the compiled bytecode, leaving class
names, method signatures, and internal logic in plaintext form.

I m p a c t

As a result of missing code shrinking and obfuscation, an attacker who obtained the released APK could easily reverse‑engineer the
SDK. Readable class and method names would reveal internal implementation details—such as proxy handshake logic,
revenue‑tracking algorithms, or any embedded credentials/patterns—enabling intellectual property theft, unauthorized modification,
or targeted attacks against the SDK’s business logic.

Proof of Concept

File name: android_sdk/service-test-java/app/build.gradle.kts
Line number: 25

buildTypes {buildTypes {
 release { release {
 isMinifyEnabled = false isMinifyEnabled = false
 proguardFiles(getDefaultProguardFile("proguard-android-optimize.txt"), "proguard-rules.pro") proguardFiles(getDefaultProguardFile("proguard-android-optimize.txt"), "proguard-rules.pro")
 } }
 } }

File name: android_sdk/service-test/app/build.gradle
Line number: 25

buildTypes {buildTypes {
 release { release {
 minifyEnabled false minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro' proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 } }
 } }

File name: android_sdk/service/service/build.gradle
Line number: 25 and 31

buildTypes {buildTypes {
 debug { debug {
 debuggable true debuggable true
 minifyEnabled false minifyEnabled false
 } }
 release { release {
 debuggable false debuggable false
 minifyEnabled false minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro' proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
 } }
 } }

Example screenshot of source code:

Score

CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:N (4.7)

Recommendation

Enable Minification: Set isMinifyEnabled = true for the release build type to invoke R8/ProGuard.
Customize Rules: Review and harden proguard-rules.pro to preserve only required SDK entry points (e.g., public API) and

obfuscate internal classes.
Automate Checks: Incorporate a CI gate that fails if minifyEnabled is false on production builds.
Separate Test vs. Production: Ensure test applications use relaxed settings, but enforce strict obfuscation and shrinking on all

production SDK releases.

Remediation Comment
SOLVED : The Infatica team addressed this issue.

Remediation Hash
https://git.infatica.io/infatica_golang/android_sdk/-/tree/b3a27148d91ee16105c42363853791d1ec66d102

https://git.infatica.io/infatica_golang/android_sdk/-/tree/b3a27148d91ee16105c42363853791d1ec66d102

1 0 . 3 S E N S I T I V E I N FO R M AT I O N D I S C LO S U R E V I A LO G G I N G

// LOW

Description
During a source code review of the private Infatica SDK repository, it was discovered that the Android implementation was logging
sensitive network information. Specifically, the method networks() collected the end‑user’s DNS server IP addresses and
immediately emitted them to the debug log via:

Log.d(tag, "networks(): $json") Log.d(tag, "networks(): $json")

This JSON payload could reveal the user’s network configuration or ISP details—information that was considered personal data and
should not have been exposed in application logs.

I m p a c t

Because Android debug logs (logcat) were accessible to any application holding the READ_LOGS permission or via USB debugging
(ADB), an attacker or malicious app could retrieve the DNS IPs of end users. This unintended disclosure of network configuration could
facilitate targeted network attacks, fingerprinting of users’ ISPs, or correlation of user activity across different networks.

Proof of Concept

File name: android_sdk/service/service/src/main/java/com/infatica/agent/service/Service.kt
Line number: 255

Log.d(tag, "networks(): $json")Log.d(tag, "networks(): $json")

Score

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:L/I:N/A:N (3.8)

Recommendation

Remove or sanitize: The call to Log.d(tag, "networks(): $json") should have been removed from production builds.
Adjust build configurations: Ensure that verbose or debug logging of any network‑related data is disabled in release APKs (e.g., by

guarding with BuildConfig.DEBUG).
Limit data exposure: If logging of network diagnostics is required for troubleshooting, log only non‑identifying metrics (e.g., the

count of interfaces) and avoid actual IP values.
Adopt secure logging practices: Use a configurable logging framework that can filter or redact sensitive fields based on

environment (development vs. production).

Remediation Comment
SOLVED : The Infatica team addressed the issue by removing the log information.

Remediation Hash
https://git.infatica.io/infatica_golang/android_sdk/-/tree/b3a27148d91ee16105c42363853791d1ec66d102

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately following any material changes
to the codebase, whichever comes first. This approach is crucial for maintaining the project’s integrity and addressing potential vulnerabilities
introduced by code modifications.

https://git.infatica.io/infatica_golang/android_sdk/-/tree/b3a27148d91ee16105c42363853791d1ec66d102

